JFG

Carrière et vie professionnelle

Addendum

Addendum à mon article publié in Éducation & Francophonie (à paraître): Les musées de sciences, la « présence » des objets et les défis pédagogiques de l’habitus

Faute de place, j’ai dû omettre cette section de l’article originel. La voici donc, en espérant que cela permette au lecteur de l’article d’approfondir une notion théorique à l’aide d’un exemple concret. Qui sait, cette exposition sera-t-elle montée un jour?

Voici un résumé de l’article avant de passer à l’addendum en question.

 

L’objectif de ce texte est de jeter les bases théoriques et pratiques pour la création d’une approche complémentaire à la visite conventionnelle des musées de sciences et de techniques. Le point de vue proposé cherche à (re)centrer, à (re)focaliser encore plus la pédagogie et la didactique muséale sur l’objet. Comment, en effet, redonner à ces objets froids et inertes, généralement placés derrière d’austères vitrines, leur « présence » originelle, qui éveillera en nous non seulement le sens de la vue (la « beauté » esthétique et pratique de l’objet) mais tous les autres, sans lesquels les objets de notre quotidien perdent toute leur signification — leur sens. La clé d’analyse se trouve dans trois concepts : profondeur, procédé et participation. Et au cœur de ces concepts se cache l’habitus, l’apprentissage structuré et structurant de toute connaissance.

 

Dans un article à paraître prochainement dans la prestigieuse revue scientifique Nature, Peter Galison et Jeffrey Schnapp s’interrogent sur l’avenir des musées de sciences. Il ne fait aucun doute, selon eux, que ces institutions de savoir ont comme principaux objectifs didactiques et pédagogiques de synthétiser, de documenter et de transmettre les connaissances scientifiques les plus variées. Les auteurs remettent cependant en question la valeur d’une pédagogie si étroitement associée à une clientèle d’âge scolaire (concept grand public), une tactique qu’ils jugent tout simplement insuffisante et incomplète. « Talk as if to twelve year olds », écrivent-ils en exergue. Bien que ces musées, par exemple, fussent parmi les premiers à prendre le virage des technologies de l’information (jeux interactifs, vidéos et animations en tous genres, attirantes pour les jeunes), cette nouvelle génération de contenu numérique n’est bien souvent rien de plus qu’une tentative — divertissante et esthétisante — de communiquer un élément d’information pertinent, qui était auparavant divulgué de manière tout aussi efficace par l’entremise d’un support papier (cartels muraux, catalogues, brochures). Selon Galison et Schnapp, il ne faut pas s’en tenir qu’aux médias de transmission des connaissances. Il faut complètement repenser la stratégie didactique des expositions, qu’ils déclinent en trois concepts: profondeur, procédés et participation. (En anglais, ils écrivent: « depth (not anthology) », « process (not product) » et « participation (not dissemination) »).

Cette approche, centrée sur l’objet scientifique, est certes ambitieux et demande une reconfiguration considérable du volet pédagogique et didactique des musées de sciences et de techniques. Afin de mieux comprendre de quoi il retourne, considérons l’exemple suivant, tiré de l’actualité scientifique québécoise récente : Le prix de la découverte de l’année 2012 octroyé par la revue Québec Science au R4E ramjet rotatif, ou moteur à hydrogène innovant.

 

(Les quatre chercheurs à l’origine du ramjet rotatif : Prof. Martin Brouillette, David Rancourt, Mathieu Picard et Prof. Jean-Sébastien Plante.)

 

Ce moteur révolutionnaire développé à l’Université de Sherbrooke est compact, fonctionne à l’hydrogène et produit une puissance mécanique phénoménale. Son efficacité détrône le standard de l’industrie, soit la turbine à gaz. Sa caractéristique physique première? Il ne contient qu’une seule pièce mécanique en mouvement, le rotor. Le punch? Imaginez la puissance d’une Ferrari dans un moteur de 12 kg! Comment le scénario d’une telle exposition pourrait-il se présenter? Tentons l’exercice et déclinons sous forme télégraphique les principaux points qui s’avéreraient intéressants de traiter[i].

 

Profondeur, ou archéologie du savoir :

Il faut chercher dans la « présence » des objets individuels une archéologie du savoir, une profondeur de connaissances et de savoir-faire distribués en de multiples strates épistémologiques et techniques.

  1. Au cœur du moteur se déploie le concept de statoréacteur. On peut alors :
    1. Discuter des caractéristiques de cette technologie (physique & ingénierie).
    2. Mentionner l’historique de cette technologie (qui remonte au début du 20e siècle) et les liens étroits avec l’aviation civile et militaire (avions et missiles).
    3. Observer l’apport économique et social de l’industrie aéronautique et son importance pour les États (pensons à Bombardier au Québec, Boeing aux États-Unis, Embraer au Brésil et Airbus en Europe).
  1. L’utilisation de l’hydrogène comme carburant permet :
    1. D’approfondir ce qu’est une énergie propre, qui n’émet aucun oxyde d’azote, contrairement aux turbines à gaz qui en produisent une grande quantité.
    2. D’expliquer la manière de produire l’hydrogène, d’en donner ses caractéristiques chimiques.
    3. D’observer que l’hydrogène est le moteur des étoiles.
    4. D’analyser les bienfaits de l’électrification des transports routiers, enjeux important de notre société.
    5. D’aborder la question de l’environnement et du réchauffement de la planète.

Procédés, ou la science en action :

Ce n’est pas le savoir paradigmatique de la science qui est intéressant, mais plutôt ses procédés et pratiques spécifiques, y compris l’apport épistémologique des échecs et des faux départs, ainsi que le rôle sociologique crucial des institutions qui financent les recherches.

  1. La conception de ce moteur se résume en grande partie à une modélisation fine, qui résulte en un prototype optimisé pour une physique spécifique.
    1. Qu’est-ce que la modélisation? Qu’est-ce que cela nous permet de faire? Qui se sert de la modélisation en science et technologie?
      1. Le rôle primordial des ordinateurs dans ces domaines de recherche depuis les années 1940.
    2. Pourquoi avoir pris 13 ans pour développer ce prototype?
      1. « Le principal défi lorsqu’on travaille en recherche, c’est l’échec. Nous en avons explosé des prototypes au cours des années… » Quels sont ces échecs? Qu’ont-ils appris de ceux-ci? Échecs versus occasions de nouvelles découvertes?
      2. Comment élabore-t-on un projet de recherche qui commande une structure du type « high risk / high reward» ?
      3. Quel est l’apport de la relation professeur-étudiants au projet de recherche?
    3. Comment passe-t-on du modèle virtuel au prototype matériel?
      1. Qui fabrique le moteur, et particulièrement la pièce rotative si innovatrice?
      2. Comment obtient-on des brevets? Est-ce nécessaire? Explication du concept de propriété intellectuelle. (On peut consulter le brevet US du ramjet rotatif sur le site de Google patents.)
  1. Pourquoi ce moteur est-il l’exemple parfait d’une technologie de rupture?iron-man-iron-man-vs-captain-america-how-will-marvel-handle-the-avengers-in-civil-war
    1. Quelle est la vision future — futuriste! — de ce projet innovateur?
      1. Par exemple, la confection d’exosquelettes ou orthèses robotiques de haute puissance. « Iron Man : c’est maintenant du concret » selon les dires du chef de projet.
    2. Selon les chercheurs, une telle technologie pourrait un jour déclasser la turbine à gaz, donc briser un paradigme technologique actuel.
  1. Comment finance-t-on un pareil projet?
    1. Subventions des gouvernements, comme le Conseil de recherches en sciences naturelles et en génie du Canada (500 000$).
    2. Partenaires industriels tels Pratt & Whitney Canada, Hydrogenics, Cognitek, Composites Atlantiques ainsi que NRC – Aerospace Manufacturing.
    3. Le milieu économique de l’Estrie pourrait aussi être intéressé à investir pleinement dans une découverte locale.

Participation, ou que puis-je faire à titre de « simple » visiteur? :

Pourquoi se limiter à une simple « interaction virtuelle » quand il devient de plus en plus aisé de participer activement à la recherche fondamentale? [ii]

  1. L’utilisation d’un site web comme Kickstarter pour offrir une levée de fonds participative.
  2. Élaboration d’une plateforme web et mobile pour continuellement informer les personnes intéressées par le projet. Cela pourrait comporter des infos tels que :
    1. Qui travaille au projet? Où sont rendus les étudiants? (Présentement, l’un fait une thèse de doctorat au MIT et l’autre au Georgia Institute of Technology).
    2. La tenue d’un blogue pour échanger des infos et partager des ressources et des découvertes (une pratique, par exemple, répandue en astronomie amateur).
    3. L’organisation d’ateliers spécialisés et pointus pour aller plus en profondeur et ainsi entretenir un engouement pour le projet.
    4. Le développement d’un jeu (concept de gamification de la science, ou de la technè) pour pousser plus loin le développement de concept théorique et technologique.
  3. La mise en place de forums publics afin de débattre des enjeux économiques, technologiques et environnementaux d’une telle invention.
    1. Créer des événements participatifs avec des institutions et organismes québécois tels que les chambres de commerce du Québec, les écoles d’ingénierie, les associations de PME, les ministères gouvernementaux et les groupes environnementaux.
  4. Finalement, la mise en place d’un dispositif créatif, voire artistique, qui permettrait la visualisation et la commercialisation d’applications nouvelles pour cet engin innovateur.

 

L’objet matériel, dans ce cas-ci le R4E ramjet rotatif, est mis à nu, les différentes couches épistémologiques, techniques, sociologiques et culturelles décortiquées et présentées en exemple de « schèmes de la pratique » en science et technologie (pour reprendre un concept développé par Philippe Descola dans son ouvrage Par-delà nature et culture (2005), qui examine la non discontinuité — la fausse dichotomie — entre l’homme (culture) et son environnement (nature). Les « schèmes de la pratique » sont en effet considérés comme la source principale des habitus). Cette façon d’aborder et de présenter des objets constitue une amorce méthodologique novatrice et nécessaire, à mon avis, pour justement aller au-delà de la simple présentation esthétique de l’objet scientifique, ou du jeu éducatif destiné à la clientèle scolaire.

 

2013_04_11_newsletter

[i] Les informations techniques proviennent des textes de Joël Leblanc (2012), de Marty-Kanatakhatsus Meunier (2012), d’Isabelle Pion (2013) et du site Internet de l’Université de Sherbrooke (CAMUS) dédié au ramjet. Les 4 « R » sont pour Rim-Rotor Rotary Ramjet et le « E » pour Engine.

[ii] Gingras (2013, p. 21-24) parle brièvement du concept de « citoyens experts », ces professionnels militants qui font partie de groupes de pression, et qui « osent » remettre en question les résultats des scientifiques établis, dans des domaines aussi variés que la médecine, la technologie et l’environnement. Comme l’explique Gingras, cette « transformation des rapports entre citoyens et scientifiques est bien sûr liée à la montée du niveau général d’éducation mais également à l’accès facile, rapide et gratuit — grâce, en particulier, à Internet — à tout un ensemble de résultats de recherches, auparavant difficiles ou impossibles à obtenir et à assimiler. » La santé démocratique d’une nation ne dépend pas uniquement d’un sain débat politique, mais aussi d’une appréciation accrue des enjeux contemporains de la science et de la technologie (comme, par exemple, la décision unilatérale d’Hydro-Québec de reléguer aux oubliettes le développement industriel du moteur-roue, inventé en 1994 par l’équipe de l’ingénieur Pierre Couture). Les musées de sciences et de techniques offrent des lieux tout indiqués pour débattre publiquement de telles questions, qui ne sont pas sans intérêt pour l’avenir économique du Québec.

 

LEBLANC, J. (2012). Ils ont réinventé le moteur. Québec Science, 13 décembre 2012.

MEUNIER, M.-K. (2012). Le ramjet rotatif de l’UdeS propulsé au titre de « Découverte de l’année 2012 ». Article du 5 avril 2013.

PION, I. (2013). Le moteur d’une grande révolution? La Tribune, 25 février 2013.

January 13, 2015 Posted by | Uncategorized | Leave a comment

Organum, Habitus, Museum

ORGANUM, HABITUS, MUSEUM: EARLY MODERN INSTRUMENTS IN CONTEXT

Manchester, UK, 27 July 2013, iCHSTM

Session S038. “A work to be done”: the manual and the cognitive in early-modern science

 Abstract:

What did Francis Bacon mean in his 1620 Novum Organum when he proclaimed that he had “supplied the Instrument (Equidem Organum probui)” to solidly found philosophy and the sciences on every kind of experience? What did René Descartes mean when he wrote to Mersenne that his Discours de la méthode consisted “more in practice than theory” and to princess Elisabeth that in order to always be prepared (disposé) to judge well, one needed two things: the knowledge of truth and the habit (l’habitude) of remembering and recognizing this knowledge every time one stood in front of it. Why did David Hume’s philosophy of knowledge relied so heavily upon habit, or custom? So much so that without customary conjunction there simply was no knowledge of the world? These abstract early modern “instruments” were as much dependent on practical habits (or practical schemes) as were material instruments—such as the telescope, the air pump and a plethora of mathematical instruments. In this paper I want to explore (I should perhaps say follow) the trajectories of these diverse objects: what define them as instruments (organum), how distinctive practical habits (habitus) were for each instrument, and finally how should we reconcile these early modern instruments and practices with our vastly different intellectual and cultural contemporary context (museum). There exist a widening gap between the production of scholarly works on scientific instruments and their showcasing in brightly lit and decontextualized museum spaces. The questions are twofold: why care? And if we do care, how to bridge this gap? Mapping the trajectories between early modern instruments and today’s museums may actually compel us to look back at these objects and reevaluate our understanding of their inner practical and operational attributes.

*****

(Here is the introduction to the talk)

Upon entering the Putnam Gallery at the Collection of Historical Scientific instruments, we are immediately met—confronted—with science, art, and skilled craftsmanship. In front of us stands a grand orrery made by Joseph Pope, a Boston clockmaker who began the instrument’s intricate geared mechanism at the start of the American Revolution, in 1776. Though of great interest, I want us instead to turn our gaze toward the left, on an impressive display of scientific instruments. Tucked in there is certainly one of the most notable instruments found at the CHSI. It is not Jonathan Sisson’s 1735 version of Hadley’s quadrant—or octant—one of the earliest known examples of such an instrument. Neither is it Oughtred’s circle of proportions—or circular slide rule—made in the 1630s and an early example of its kind as well. No, I’m talking about the “triangular shaped” instrument farther back and to the right. Yes, that one: Galileo Galilei’s geometric and military compass, made in circa 1604 for the Duke of Mantua, Vincenzo Gonzaga the first, by Galileo’s own instrument maker, Marc’Antonio Mazzoleni, a former employee of the Venetian Arsenal. Galileo spent the winter of 1603-04 at the Duke’s Court, and though he unsuccessfully gained the patronage he sought, he did receive a gold chain with a medal and two silver cups for his gift of a compass—this compass!—and a copy in manuscript of the instruction manual.

This instrument (organum) is now at Harvard (museum). How does it work (habitus)? In the first decade of the 1600s one had to travel to Galileo’s own house in Padua to learn its use. Galileo provided room and board to interested nobles and wealthy northern Europeans (up to 20 per year), together with private mathematical teachings and an assortment of instruments—including the compass, his best seller. It was a lucrative business for Galileo, several times better than his salary provided by the University of Padua. In 1607, Galileo said there were about 100 of his military compasses in circulation around Europe. And by 1610, he had apparently sold 300 of them, each at a cost of 150 lire.  Galileo was very careful not to divulge too much about the instrument. The instruction manual in manuscript form that accompanied the compass was cleared of images. As Mario Biagioli describes in detail in a forthcoming article,

In a move he was to repeat virtually unchanged in the 1610 Sidereus nuncius, Galileo described the use of the instrument, but not the instrument itself. And, as with the telescope, he tended to give or sell his instruments to “end users”—people who, either because of social status or lack of skills, were not likely to copy them for profit.

Even when Galileo finally published the manual in 1606 as Operazioni del compasso geometrico et militare it still contained no images (they were finally introduced in the Latin translation of 1612, printed in Strasbourg). No wonder why Galileo went bananas when Baldassare Capra published a very similar account of the instrument, with detailed engravings, in 1607. What followed was a big lawsuit against Capra for plagiarism, won by Galileo.

For Galileo, and other contemporary instrument makers, the organum went hand in hand with its habitus. They were—as all instruments are—intricately linked together. Under one roof, Galileo had the military compasses made by a skilled artisan and the lecture demonstrations were performed by him, a trained mathematician. Usus et fabrica, under the close supervision of Galileo. What is left of this now? In the museum context the instrument has lost all connections to the past. It is mute—it is a thing that doesn’t talk anymore. It is transformed in a “bel objet” to paraphrase Jean Baudrillard. In trying to remedy the situation the Museo Galileo in Florence has designed several years ago an interesting online tool to help us better understand what this instrument was and how to use it. But can this virtual tutorial actually replace the brass instrument in our clumsy and unaccustomed hands? (The emphasis here is on the adjectives clumsy and unaccustomed.) How should it be operated? How difficult is it to work with both the compass and a pair of dividers? Will the latter easily scratch the former? How hard is it to open the compass and take a reading on the divided circle? On the proportional lines? So many questions impossible to answer in the museum and cyber spaces. Is it unavoidable? Does it matter at all in the end, especially for us scholars?

The goal of this paper is to answer YES to the last question and explain why. I begin by exploring the relationship between organum and habitus in a variety of contexts. Savants, artisans, instruments, and “customized” practices (intellectual as well as hands-on) will mix in examples mostly but not exclusively taken from Descartes, Pascal, and Réaumur. The early modern picture of knowledge production resulting from this abbreviated analysis should help us outline the opportunities and pitfalls of another type of “customized” perspective: museum practices. Mapping the trajectories between early modern instruments and today’s museums may actually compel us to look back at these objects and re-evaluate our understanding of their inbuilt epistemological and operational features.

July 10, 2013 Posted by | Uncategorized | Leave a comment

Acfas, mai 2013

81e Congrès de l’Acfas, Colloque thématique
Université Laval, mercredi le 8 mai 2013
347 – Vingt ans de recherche en éducation muséale

Responsable du Colloque : Maryse Paquin, professeure, UQTR

Jean-François Gauvin, Ph.D.
Directeur administratif, Collection of Historical Scientific Instruments, Université Harvard
Lecturer, Département d’histoire des sciences, Université Harvard

Présentation orale

Titre : Les musées de sciences, les objets et les défis pédagogiques de l’habitus

Thèmes : 2.3, 4.3, 5.4 et 6 (selon la liste de thèmes fournie)

L’objectif premier de cette communication est de jeter les bases théorique et pratique pour la création d’une approche complémentaire à la visite conventionnelle des musées de sciences et de techniques. Le point de vue proposé cherche à (re)centrer, à (re)focaliser encore plus la pédagogie et la didactique muséale sur l’objet. Comment, en effet, redonner à ces objets froids et inertes, généralement placés derrière d’austères vitrines, leur « présence » originelle, qui éveillera non seulement le sens de la vue (à la « beauté » esthétique et pratique de l’objet) mais tous les autres, sans lesquels les objets de notre quotidien (voiture, iPhone, micro-onde, Kinect, etc.) perdent toute leur signification—leur sens. La clé d’analyse se trouve dans trois concepts : profondeurprocédé et participation. Et au cœur de ces concepts se cache l’habitus, l’apprentissage structuré et structurant de toute connaissance.

JF Gauvin, « L’apport des musées dans l’enseignement des sciences », Education Canada 52, no.2 (printemps 2012), 26-29.
Peter Galison et Jeffrey Schnapp, « Science museum futures », Nature (à paraître).
David Edwards, The Lab. Creativity and Culture (Cambridge, MA, 2010).
Tony Wagner, Creating Innovators. The Making of Young People Who Will Change the World (New York, 2012).
Hans Gumbrecht, Production of Presence : What Meaning cannot Convey (Stanford, 2003).
Klaus Staubermann, dir., Reconstructions. Recreating Science and Technology of the Past (Édimbourg, 2011).

Mots clés : musées de sciences; objets scientifiques & technologiques; habitus; les cinq sens; présence & signification; innovation

J’ai créé un iBook, tout simple, à partir du texte et du Powerpoint de cette conférence. Vous pouvez le télécharger pour votre iPad ici.

April 29, 2013 Posted by | Uncategorized | Leave a comment

Dissertation Word Cloud

This is a cloud image of my dissertation (without footnotes but with bibliography) with the most important words. Unsurprisingly, “instrument”, “instruments” and “machine” dominate the field of view. You can do your own on the wordle website. I owe this link to Alex Wellerstein.

October 4, 2010 Posted by | Uncategorized | 1 Comment

Situating Science Cluster Workshop at McGill University

August 27, 2010 Posted by | Conference/Workshop, Epistemology, General History of Science, Instrument | Leave a comment

Things That Talk (McGill Course)

HIST 410 / CRN 10131 (McGill University, History Department)

Things That Talk: Understanding Early Modern Objects

Fall 2010

Time: TTh, 8:35am-9:55pm
Place: Leacock 31 (and field trips!)
Office hours: Tuesday 2-4
(OR by appointment)

Instructor: Jean-François Gauvin
Office: 3610 McTavish, room 35-3
(514) 398 3130

email: Jean-francois.gauvin (at) mcgill.ca

Description

The goal of this seminar is to look at objects (coffee, clothing, fireworks, books, air pump, tulips, etc.) and try to understand what they represented and what they meant in the early modern period. Material objects are natural, artificial, manufactured, symbolic, scientific, economic, social, political and much more. Indeed, how can a simple object such as coffee beans threaten the political spectrum of seventeenth-century England? What can we learn about the social and economic culture of seventeenth-century Holland by studying «mere» tulips? What can the use and manufacture of fireworks in the eighteenth century tell us about the close interaction of the artisan and savant communities? This course is not limited to the historical analysis of objects, seen through secondary literature. It is also about methodological approaches to the study of things: how to proceed in framing an argument centered on a material object—whether an early modern tulip or a contemporary iPhone. We live (and always have lived) in a human-built world, a world overflowing with material objects that constantly influence our life, economy, culture, and society in general. Though the subject is vast (we are not even touching on archeology and anthropology), the course has been divided into three sections, all dealing with the early modern period: everyday objects, scientific and technological objects, and theoretical approaches to things. Together, they give a very good account of things and their key role in the study of intellectual, science and social history.

The seminar is a reading-intensive course, which means there will be no written assignments. Besides what could be considered a heavy reading load, there will be «fun» outings in museums in order to be confronted with some of the things discussed in the books. What can we learn from those «museum objects» and how can we use them in our own study of history?

Note: please see me if you are concerned about pre-requisites or background. The course combines social, cultural and intellectual history, and does not require technical knowledge in the natural sciences.

Reading

(Books *13* are available at the Paragraphe Bookstore AND on reserve in McLennan-Redpath Library)

  • Daniel Roche, A History of Everyday Things: The Birth of Consumption in France, 1600-1800 (Cambridge: Cambridge University Press, 2000).
  • Daniel Roche, The Culture of Clothing: Dress and Fashion in the Ancien Régime (Cambridge: Cambridge University Press, 1997).
  • Brian Cowan, The Social Life of Coffee: The Emergence of the British Coffeehouse (New Haven: Yale University Press, 2005).
  • Adrian Johns, The Nature of the Book: Print and Knowledge in the Making (Chicago: University Of Chicago Press, 2000).
  • Anne Goldgar, Tulipmania: Money, Honor, and Knowledge in the Dutch Golden Age (Chicago: University Of Chicago Press, 2008).
  • Paula Findlen, Possessing Nature: Museums, Collecting, and Scientific Culture in Early Modern Italy (Berkeley: University of California Press, 1996).
  • Steven Shapin & Simon Schaffer, Leviathan and the Air-Pump: Hobbes, Boyle, and the Experimental Life (Princeton: Princeton University Press, 1989).
  • Chandra Mukerji, Impossible Engineering: Technology and Territoriality on the Canal du Midi (Princeton: Princeton University Press, 2009).
  • Simon Werrett, Fireworks: Pyrotechnic Arts and Sciences in European History (Chicago: University Of Chicago Press, 2010).
  • Ursula Klein & Wolfgang Lefèvre, Materials in Eighteenth-Century Science: A Historical Ontology (Cambridge, MA: The MIT Press, 2007).
  • Michel Pastoureau, Black: The History of a Color (Princeton: Princeton University Press, 2008).
  • Lorraine Daston & Peter Galison, Objectivity (New York: Zone Books, 2007).
  • Jean Baudrillard, The System of Objects (Verso Press USA, 2005).

Assessment Structure

1. Overall class participation (including field trips): 50%

2. Oral summaries and analyses of specific readings: 50%

READING INTENSIVE SEMINAR: NO WRITTEN ASSIGNMENT

This seminar is designed in such a way that all the work is focused on reading, analysing and discussing books on a specific topic. No further research or writing is expected from the students. The final grade is based only on oral assignments and participation.

In accord with McGill University’s Charter of Students’ Rights, students in this course have the right to submit in English or in French any written work that is to be graded.

McGill University values academic integrity. Therefore all students must understand the meaning and consequences of cheating, plagiarism and other academic offences under the code of student conduct and disciplinary procedures (see www.mcgill.ca/integrity for more information) / L’université McGill attache une haute importance à l’honnêteté académique. Il incombe par conséquent à tous les étudiants de comprendre ce que l’on entend par tricherie, plagiat et autres infractions académiques, ainsi que les conséquences que peuvent avoir de telles actions, selon le Code de conduite de l’étudiant et des procédures disciplinaires (pour de plus amples renseignements, veuillez consulter le site http://www.mcgill.ca/integrity).

Class Schedule

2 Sept: Intro: Things that Talk (from a now famous book edited by Lorraine Daston)

Part one (5 weeks): Everyday Objects

7 Sept: Roche, History of Everyday Things

9 Sept: continued & bring one everyday object to class

14 Sept: Cowan, Social Life of Coffee

16 Sept: meet the author day: Brian Cowan

21 Sept: Johns, Nature of the Book (chaps 1-2 and conclusion)

23 Sept: continued but class in Osler Library (chap. 7-8)

28 Sept: Roche, Culture of Clothing

30 Sept: class held at the McCord Museum

5 Oct: NO CLASS

7 Oct: Anne Goldgar, Tulipmania

Part two (5 weeks): Scientific and Technological Objects

12 Oct: Findlen, Possessing Nature

14 Oct: Continued

19 Oct: Shapin & Schaffer, Leviathan and the Air Pump

21 Oct: class held at the Stewart Museum (meet at Metro Ile Sainte Hélène at 8:30am; TAKE TAXI for return, instructor paying)

26 Oct: Murkeji, Impossible Engineering

28 Oct: Movie day: Ridicule

2 Nov: Werrett, Fireworks

4 Nov: Guest Lecture: Jean-Baptiste Fressoz, Postdoctoral Fellow, Harvard University

9 Nov: NO CLASS

11 Nov.: Klein & Lefèvre, Materials in Eighteenth-Century Science

Part three (3 weeks): Conceptual Approaches to Things

16 Nov: Pastoureau, Black, The History of a Color

18 Nov: Movie day: Secrecy

23 Nov: Daston & Galison, Objectivity

25 Nov: Continued

30 Nov: Baudrillard, System of Objects

1 Dec (not 2 Dec): class held at the Fine Arts Museum, David and Liliane Stewart decorative arts room, instructor pays for it. Meet at entrance at 6:00pm.

August 26, 2010 Posted by | Courses, Instrument, Museum | Leave a comment

The Coldest Spot on Earth

“The Coldest Spot on Earth.”  Low Temperature Physics, Superfluidity, and the Discovery of Superconductivity.

[originally published in Science and Its Times: Understanding the Social Significance of Scientific Discovery, ed. by Neil Schlager, 7 vols. (Chicago: Gale Group, 2000-2001), vol. VI, 430-432.]

Kammerlingh Onnes with C. F. Flim

Kamerlingh Onnes with G. J. Flim in 1908

Overview

The Dutch experimental physicist and Nobel Prize laureate Heike Kamerlingh Onnes (1853-1926) worked for more than four decades in low temperature physics, a discipline he helped establishing over the years as a complete and independent field of study.  When in 1908 Kamerlingh Onnes succeeded in liquefying helium, he became the very first experimentalist to reach a temperature as low as 4.2 Kelvin (or -451.84°F).  His discovery of superconductivity three years later opened whole new vistas of theoretical and experimental researches that are still today of the utmost importance to the progress of science and technology.

OnnesLiquifier

The original helium liquifier as it stands today.


Background

Low temperature physics really began in the second half of the nineteenth century with the discovery in 1852 of the Joule-Thomson effect, attributed to two British physicists, James Prescott Joule (1818-1889) and Sir William Thomson, Lord Kelvin (1824-1907).  That year Thomson, based on his and Joule’s thermodynamical studies, observed that when a gas expands in a vacuum its temperature decreases.  Indeed if gases were allowed to expand, then compressed under conditions which did not allow them to regain the lost heat, and expanded once more, and so on over and over in cascade, then very low temperatures could be achieved.  This Joule-Thomson effect — which gave rise to a whole new refrigeration industry aimed at the long-term conservation of perishable foodstuffs, dominated by industrials such as the German Karl Ritter von Linde (1842-1934) and the French Georges Claude (1870-1960) — was utilized to reach temperature never before obtained.

In 1883, Zygmunt Florenty Wroblewski (1845-1888) and Karol Stanislav Olszewski (1846-1915) were, however, the first to maintain a temperature so cold that it liquefied a substantial quantity of nitrogen and oxygen, said until then to be “permanent” gases.  Fifteen years later, the Scottish physicist James Dewar (1842-1923) was able to liquefy hydrogen by first cooling the gas with liquid oxygen — kept at its low temperature with a Dewar flask, the first vacuum, or thermos, bottle ever made — then applying the aforementioned cascade method.  At the turn of the twentieth century only the last so-called permanent gas, helium, still eluded liquefaction.

This achievement was to be the work of the Dutch experimental physicist Heike Kamerlingh Onnes.  After studying physics in The Netherlands and Germany, he started his academic career as an assistant in a polytechnic school at Delft.  It took only a few years before he received a call from Leiden University, which resulted in his appointment to the very first chair of experimental physics in the Netherlands.  Kamerlingh Onnes’ inaugural address leaves no doubt about the impetus he wanted to give to his laboratory: “In my opinion it is necessary that in the experimental study of physics the striving for quantitative research, which means for the tracing of measure relations in the phenomena, must be in the foreground.  I should like to write ‘Door meten tot weten’ [knowledge through measurement] as a motto above each physics laboratory.”  He always remained loyal to this declaration of principle.

It took more than twenty years for Kamerlingh Onnes to build and establish on a firm ground a cryogenic laboratory of international renown. [See some of the instruments at the Boerhaave Museum in Leiden.]  The laboratory workshops were organized as a school, the Leidsche Instrumentmakers School; they were to have a tremendous importance in the training of qualified instrument makers, glassblower, and glass polishers in The Netherlands.  Even though he confided in his measurement aphorism, Kamerlingh Onnes’ research was nevertheless upheld by a solid theoretical background ascribed to a couple of brilliant Dutch contemporaries, Johannes Diderik van der Waals (1837-1923) and Hendrik Antoon Lorentz (1853-1928).  Their theories helped him understand the physics involved in the liquefaction of gases.

In 1908 Kamerlingh Onnes’ efforts resulted in the liquefaction of helium, obtained at the very low temperature of 4.2 Kelvin or -451.84°F (the Kelvin absolute temperature scale, as you have probably guessed by now, was named after William Thomson, Lord Kelvin, who was the first to propose it in 1848). From then on and until his retirement in 1923, Kamerlingh Onnes would remain the world’s absolute monarch of low temperature physics.


Impact

The coldest spot on Earth was now found in Leiden.  By attaining this new level of temperature Kamerlingh Onnes set the stage for his next big, and probably most important, discovery.  Studying the electrical resistance of metals submitted to low temperature, the Dutch physicist expected that after reaching a minimum value, the resistance would increase to infinity as electrons condensed on the metal atoms, thus impinging their movement.  Experimental results, though, contradicted his claim.

Kamerlingh Onnes supposed next — based on Max Planck’s (1858-1947) hypothesized vibrators used to theoretically explain the black body, giving birth to the quantum concept — that the resistance would decrease to zero.  Using purified mercury, he found out what he had anticipated: at very low temperature electrical resistance showed a continuous decrease to zero.  Superconductivity was discovered.  The year was 1911.  When Kamerlingh Onnes received the Nobel Prize two years later, it was for his œuvre complète in low temperature physics, which of course led to the production of liquid helium.  But what about superconductivity?  Was it ignored?  In a sense, yes. And Kamerling Onnes’s contribution is still ignored for the most part. [For a similar viewpoint, and a very good discussion of the science, read the article by Rudolf de Bruyn Ouboter in Scientific American]

In the early 1910s this phenomenon was considered to be some sort of “peculiar oddity” for it could not yet be theoretically understood, much less used to practical ends.  The reason is really quite easy to grasp when you look back at history from our modern point of view: the theoretical foundation of superconductivity is quantum mechanics, still at an embryonic stage of development when Kamerlingh Onnes discovered the empirical properties of superconductors. [See some of the early instruments and devices used in Leiden for superconductivity, here.]

From then on, the quest for absolute zero began.  Large electromagnets were built in order to reach that temperature where every molecular movement stops.  It became a matter of national pride to be able to say that the coldest spot on Earth was on your territory. The successor of Kamerlingh Onnes used such an electromagnet, in 1935, to achieve a temperature of only a few thousandths of a degree Kelvin.  Leiden’s star shined again.  But astonishingly new phenomena did not always require temperatures so extreme.  Since the 1920s it was showed that at 2.17K (achieved by applying moderate pressure) liquid helium (He I) changed into an unusual form, named He II.

In 1938 Pjotr Leonidovich Kapitza (1894-1984) demonstrated that He II had such great internal mobility and near vanishing viscosity, that it could better be characterized as a “superfluid.”  Kapitza’s experiments indicated that He II is in a macroscopic quantum state, and that it is therefore a “quantum fluid.”  It now was indisputable to ascertain that low temperature physics rested on the principles of quantum mechanics.  Superconductivity thus had to be tackled with this understanding in mind.

It took, however, no less than forty-six years before John Bardeen (1908-1991), Leon N. Cooper (1930-), and J. Robert Schrieffer (1931-) finally found the underlying mechanism to Kamerlingh Onnes’ discovery.  Nicknamed the BCS theory, it can be theoretically outlined as the coupling of electrons (called Cooper pairs) attuned to the inner vibrations of the superconductor’s crystal lattice.  As the first electron in the pair flows through the lattice, it attracts toward it the positively charged nuclei of the superconductor’s atoms.  The second electron is then “pulled” forward because it feels the attraction engendered by those same nuclei in front.  The Cooper pair of electrons thus stay together as they flow through the superconductor, an unbroken interaction which helps them progress without resistance through the superconductive material.

One of the things that the BCS theory predicted was the superfluidity of the helium-3 isotope.  Lev Davidovic Landau (1908-1968) theoretically explained the superfluidity of helium-4 (He II) already in the 1940s.  Helium-4 is said to be a boson since each atom has an even number of particles (two protons, two neutrons, and two electrons).  Helium-4, as Landau showed, must then follow Bose-Einstein statistics which, among other things, means that under certain circumstances the bosons condense in the state that possesses the least energy.

superfluid

3D density plot of Bose-Einstein condensate formation in ultracold trapped Rb atoms at different temperatures (400, 200, 50 nK from left to right).

Helium-3, however, having one neutron less than helium-4 (and therefore an odd number of particles), is not a boson but a fermion.  Since fermions follow Fermi-Dirac statistics they cannot according to this theory be condensed to the lowest energy state.  For this reason superfluidity should not be possible in helium-3 — which, like helium-4, can be liquefied at a temperature of some degrees above absolute zero.  Three Americans discovered at the beginning of the 1970s, in the low temperature laboratory at Cornell University, the superfluidity of helium-3, something that occurs at a temperature of only about two thousandths of a degree above absolute zero.

Where do all these theories and experimental facts lead?  Up until 1986 the highest temperature superconductors could operate was 23.2K.  Since liquid helium (expensive and inefficient) is the only gas usable for cooling to that range of temperature, superconductors were just not practical.  New superconductors were found after 1986 that are operated at 77K.  This higher temperature allows the use of liquid nitrogen as a coolant, far less expensive and far more efficient than liquid helium.  As electronics, the designs for superconductors went from refrigerators weighing hundreds of pounds, running at several kilowatts, to far smaller units that can weigh as little as a few ounces and run on just a few watts of electricity.

This breakthrough lead to a wider use of superconductors: they are now found in hospitals as magnetic resonance imaging (or MRI) machines, in the fields of high-energy physics and nuclear fusion and finally in the study of new means of transportation, in the form of levitating trains.  Furthermore, fuel cell vehicles, run by liquid hydrogen, could one day replace the petroleum motorized cars of today.  Also, by studying the phase transitions to superfluidity in helium-3, scientists may have found a theoretical explanation on how cosmic strings are formed in the universe.  In light of all this we may conclude, as the 1996 Nobel Prize laureate Robert C. Richardson (1937-) did twenty-eight years ago, that the end of physics — viewed from the lens of low temperature physics — is yet to be at our doors.


Further Reading

Mendelssohn, Kurt.  The Quest for Absolute Zero.  2nd Ed.  London: Taylor & Francis; New York: Wiley, 1977.

Richardson, Robert C.  “Low temperature science ¾ what remains for the physicist?,” Physics Today 34, (August 1981): 46-51.

Schechter, Bruce. The Path of No Resistance: The Story of the Revolution in Superconductivity.  New York: Simon & Schuster, 1989.

Van den Handel, J.  “Heike Kamerlingh Onnes.” In Dictionary of Scientific Biography, edited by Charles C. Gillispie, 7: 220-22.  New York: Scribner, 1973.

Vidali, Gianfranco.  Superconductivity: The Next Revolution? New York: Cambridge University Press, 1993.

Nice hand drawings and other images are found at the American Institute of Physics, here.

June 29, 2009 Posted by | General History of Science, Instrument | , , , | Leave a comment

Music, Machines and Theology (I)

MUSIC, MACHINES AND THEOLOGY: MERSENNE’S ORGAN AS A CHRISTIAN SYMBOL OF NATURAL PHILOSOPHY

(Talk given on 3 November 2007 at the HSS Annual Meeting, Washington, D.C. Session organized by Heidi Voskuhl, also with Matthew Jones and Myles Jackson)


Mersenne's "orgue positif," from the Harmonie universelle

Mersenne's "orgue positif," from the Harmonie universelle

Renaissance and early modern machines are usually epitomized by the works of such luminaries as Leonardo, Jacques Besson, Agostino Ramelli, Vittorio Zonca and Salomon de Caus, to name but a few. Except for Leonardo-and scores of other engineer-minded savants, whose work remained in manuscript form-all of the aforementioned individuals printed expensive in-folio Theaters of Machines, in which contraptions of various complexity were depicted. Military bridges and hurling engines, cranes, water-raising devices, grain and saw mills, and machinery for textile industries: some machines were merely fantastic inventions, others were actually built and useful. But as intricate as these early modern machines may have appeared to a contemporary reader, they were relatively simple and symbolically weak in comparison to the king of musical instruments: the pneumatic organ.

My talk centers around the musical organ not only because it was one of the most complex pieces of machinery built in early modern Europe, but because it likewise symbolized the material culture of faith within the Christian Church. Putting together these two apparently distinct attributes-the mechanical and the divine-I will demonstrate that in the hands of the well-known Parisian Minim Marin Mersenne, the mechanical complexities of the pneumatic organ became the best material and Christian representations of natural philosophy. In effect, the organ illustrated better than most machines why natural philosophical knowledge had to be established on theory, experiments and artisanal knowledge. Moreover, the fact that the organ was a valuable asset to the liturgy of Catholics and most Reformists in a time of religious uncertainty, helped strengthening the claim that Mersenne’s universal harmony was a truly ecumenical Christian science.


The organ as a powerful symbol of Christianity

To a polymath like Cardano, the organ was the organum organorum, the “most simple of simple instruments and the most elaborate of the elaborate.” As he explains, “Although all instruments are called organs in Greek, this one alone has retained the name through its superiority…” It was, in other words, “the most perfect, pleasant, melodious, noble and excellent instrument.” The mechanical structure of and the melody coming from an organ, according to Pierre Trichet, a contemporary of Mersenne, let any listener wonder whether such an invention was actually divine rather than secular. Such was the common tropes regarding the majestic musical instrument, found at royal courts and especially in churches. During the Middle Ages, the organ gained a definite religious status that no other musical instrument came close to reach in Europe. It became the only musical instrument sanctioned by the Church to play during Mass. For that reason alone they achieved a unique status in the academic, royal, and social-cultural environments of early modern Europe, often celebrated in poems and scholarly works. The organ, in brief, was not only the most complex machine built in early modern Europe. It turned into one of the dominant symbols — icons — of Christianity.

Evidence show, however, that instruments other than the organ were infiltrating sixteenth-century churches. In Northern Europe, Erasmus and Martin Luther complained in numerous writings about the cacophonic presence of musical instruments during mass. Erasmus, in his Declarationes ad censuras (1532) criticized what he called the booming sounds of instruments, “the almost warlike din of organs, straight trumpets, curved trumpets, horns and also bombards, since these too are admitted in divine worship.” After a mass in which a bass-voiced sacristan, who accompanied himself with a lute, sang the Kyrie and Patrem Luther wrote ironically that “I could hardly refrain from laughing because I was not accustomed to such organ playing…”  Even Montaigne, a few decades later, was likewise dumbfounded to hear violins accompanying the organ during a Mass he attended in Verona.

But what Erasmus, Luther, and the majority of Reformists and Catholic Counter-Reformists fought against was not the organ per say, but the kind of music performed during Mass. Dances and frivolous chansons were improvised on the sacred instrument and played in churches-what Erasmus called shameful love songs (amatoria fœdæque cantilenæ). The habit became so generalized that the Council of Sens (1528) reminded all organists to abstain from playing lascivious and immodest popular music in churches. The Council of Cologne (1536) and the Council of Trent (1562) maintained similar positions on the subject. Yet the regulation was so badly ignored that it had to be reiterated in the Councils of Reims (1564), Cambrai (1565) and Bordeaux (1583): “vitetur lasciva musica … moderetur organorum usus.

Under Luther and the Lutherans singing and organ playing, if done right, were an important part of the Reformist liturgy. Other radical Reformist movements, however, condemned some or all liturgical music. Karlstadt, during Luther’s exile from Wittenberg, came to accept singing during Mass but banished organ playing, dubbing the instrument a “celestial bagpipe.” In Zürich, Zwingli not only muted the organs but censured singing, “this barbarous mumbling” he called it. In Geneva, Calvin accepted singing in his Articles of 1537 since “we know from experience that song has great force and vigor to arouse and inflame the hearts of men to invoke and praise God with a more vehement and ardent zeal.” Organs, conversely, did not fare well under Calvinism. More often than not they were destroyed, as in Lausanne, Biberach, Frankfurt, Schönthal and Ulm, where horses were brought into the church to break and remove the largest pipes. Calvinists and Huguenots alike treated the organ as they did any other type of religious iconography. The organ became in this context more than a mechanical contraption: it became a genuine icon of the old papist ways.

Organs received a harsh treatment as well in Puritan England. As early as 1536, the Lower House of Convocation included music and organ playing among the eighty-four faults and abuses of religion. In 1567, a tract entitled “The Praise of Music” mentioned that “not so few as one hundred organs were taken down and the pipes sold to make pewter dishes.” Just a few years later, some Puritans reaffirmed that “concerning singing of psalms, we allow of the people’s joining with one voice in a plain tune, but not of tossing the psalms from one side to the other with intermingly of organs.” And in 1586, radicals asked that “all cathedral churches [were] put down where the service of God is grievously abused by piping with organs…” At the start of the English civil war in 1642, soldiers waged a battle against the organ at Canterbury while organ pipes from Westminster Abbey were carried away and bartered for beer. The Chichester organ was put down with poleaxes and soldiers marched in the street of Exeter blowing into organ pipes newly removed. It is in the midst of this conflict, moreover, that organs were included into the category of “superstitious monuments,” thus sealing their fate in England for roughly half a century.

An anonymous work, “Printed in the yeer of Discord 1642,” is revealing of the hostility and ill feeling surrounding the pneumatic machine. Written in the form of a nasty yet somewhat comical dialogue between Purple and Orange-Tawny, the text exposes more than a religious rift between the supporters and opponents of the organ. Orange-Tawny, after a series of fitting insults in reply to Purple’s, goes straight to the point: “I will hold no disputation with thee, but jog on in my holy violence to erect a religious battery against (those pipes of Popery & Superstition) the Organs.” Purple, puzzled by Orange-Tawny’s “extravagant zeal,” received this other categorical statement:

O[range-Tawny]. I tell thee, they [the organs] be the timbrels of Satan, and entice the eares of the religious to fancy sounds of vanity, whilest the smock apparelled Singing men fill the ears of our select Brethren with crotchers.

Yet what comes out forcefully from this small work is the deep social division created by the playing of church organs in England. The split is clear-cut: those who loathed the organ were craftsmen; those who valued the sacred instrument were gentlemen, as the long humorous lists attest.[i] Organs were indeed very much admired by the English elite throughout the seventeenth century. Its music was heard outside of churches and composers actually improved on past harmonies. Though John Milton, for instance, compared the organ in Paradise Lost to the House of Demons, or Pandaemonium, he was a great lover (and player) of organ music. Despite that fact, organs were muted during Mass — if not completely destroyed. It was only toward the end of the century that new church organs were built and their liturgical value defended with renewed vigor.

The organ was thus charged with an unmistakable religious aura, impossible to miss or misinterpret in early modern Europe. This is perhaps what makes Mersenne’s writing about the organ such a tour de force. On the surface, he was able to strip the organ’s religious aura down to the fundamental mechanical nature of the instrument. In reality, however, he relocated the aura, from a matter of faith to one of epistemology. In Mersenne’s writing, the organ was no longer the epitome of church music, but the embodiment of musica scientia, the natural philosophy of music. (to be continued…)

___________________________

[i] Compare the list of characters and notice the humor provided by both protagonists:

O[ange-Tawny]. In the first place here is Ananias Slie Glazier, Hotofernes Holy-Hanke Pewterer, John Judas Serjeant, Michael Meddle-much Pin-maker, Nehemiah Needlesse Tobacco-pipe-maker, Marmaduke Marre-all Gunsmith, Stephen Stare Spectacle-maker, Ralph Round-scull Button-maker, Simon Schisme Felt-maker, Richard Riot Lock-Smith, Aminadad Mercilesse Butcher, and Edmond End-all Dyer; these are the names of the men, the rest consisteth in the allowance of women and apprentices, which you shall at large heare named.

P[urple]. Indeed I will not sir; you have been too tedious already; if your men be no better, I guesse what your women and apprentices are: I will now name you onely fix that shall oppose your twelve, and they are these. Thomas True-heart Gentleman, Lawrence Loyall Esquire, Francis Well-borne Gentleman, Richard Royall-thought Esquire, Constantin Tryall-proofe Gentleman, Charles Good-cause Esquire, with many more as well borne, and of as noble natures, which you are not worthy to heare named, since not capable to understand…

March 16, 2009 Posted by | Epistemology, Instrument | , , , , , | 1 Comment

Music, Machines and Theology (II)

Mersenne’s organ: Theory, experiment and artisanal knowledge revealed

To Mersenne the organ was simply one of the most admirable pneumatic machines ever invented. And strictly that. Not once in the treatise on organ was he tempted by the art of allegory, portraying the organ as a symbol of God’s creation, for instance, as Athanasius Kircher did in his 1650 Musurgia universalis. Yet any reader could tell the organ represented more than a musical instrument. Even browsing Mersenne’s description of the

God playing on his celestial organ, giving birth to the world. From Kircher's Musurgia universalis

God playing on his celestial organ, giving birth to the world. From Kircher's Musurgia universalis

organ gives incredible insights into the practice of natural philosophy, which in addition to a thorough knowledge of music theory, now involved experimental data gathering and hands-on savoir-faire from the mechanical arts. Actually making the organ, nonetheless, had less importance to Mersenne than the rigorous account entailing its construction. The organ’s comprehensive description, as we will see, reified the practices of the mechanical philosophy into an admired and altogether Christian material entity. The organ was thus not only a powerful religious symbol to Mersenne: it epitomized and materialized the role that theory, experiment, and the mechanical arts played in the overall notion of harmonie universelle.

Length of organ pipes, and how they sound, from Mersenne's Harmonie universelle.

Length of organ pipes, and how they sound, from Mersenne's Harmonie universelle.

Mersenne’s experimental research with organ pipes is traceable to the early 1620s. In correspondance with Rouen honnêtes hommes like Robert Cornier, and in situ, Mersenne sought to have experiments with organ pipes done by other parties in order to confirm his own results. Mersenne was chiefly interested in the standardization of organ-pipe making. Mersenne, for instance, discovered in a series of experiments that if one used small diameter pipes, say of three lines (roughly 6 mm) and a base length of half a foot, Pythagoras’s explanation of consonances was approximately verified-i.e. if you double the length of this small pipe, it will sound an almost perfect octave lower. But what Mersenne discovered, and Vincenzo Galilei before him, was that with bigger sounding pipes this scheme did not stand anymore. In a series of numerical examples, Mersenne demonstrated that doubling the length of a pipe while at the same time keeping its cross-section constant did not produce the required octave; the sound was off by half a tone, a tone, or even more. Similarly, the Minim was able to report numerous experimental results proving that keeping the length of organ pipes constant while varying their cross-section did not produce either the required consonances. Here he used five half-foot pipes of diameters ranging from three lines to four inches, always doubling in size following the geometrical series. The experiments showed that it was virtually impossible to reach an octave when keeping the pipes’ length constant while modifying the cross-section. Mersenne wrote that to reach a sound an octave lower, one would have to add two inches in diameter and two feet in length to the biggest pipe. Mersenne’s description of the pipes’ dimension was precise to make sure that if “one encounters other intervals in pipes larger or smaller, he will have occasion for seeking the reason.”

From such experiments Mersenne was able to generate a universal table of organ-pipe making, containing he said “all that can be reasonably desired on the subject [the division of the octave], aside from which there is nothing for the makers to know.” In this full-page table, Mersenne combined knowledge acquired from experiments, artisanal practices and the theory of mathematical proportions. This table — drawn to scale, the height being one foot (pied de roy) — contains eleven columns showing the precise length and cross-section of organ pipes corresponding to several divisions of the diapason. This table, however, did not solve all there was to know about the production of sound in organ pipes. Why, for example, did organ pipes sing different intervals when air pressure varied? What was the relationship between air pressure, musical intervals and the material components of pipes? For Mersenne the “manufacturers can help out Philosophy by preparing a catalogue of the pipes which rise only a semitone, or a third, or a fourth, or a fifth, etc., for it will be easier to find the reason when one understands the qualities of the pipes which cause the difference of these pitches…” Musical instrument makers were truly central to Mersenne’s work. Because they were actually making these pneumatic machines, which involved all kinds of matter, object and craftsmanship, they were the best providers of raw data regarding the nature of sound production. Finally, as Mersenne reminded his readers, due to the great and multifaceted complexity of the organ “whatever one may say and whatever figures one can give to explain everything that concerns the construction of the organ, it is very difficult to have it understood when one has not seen one made, or has not considered the pieces in the large as well as in detail.” To fully understand how an organ worked, one had to watch and scrutinize in situ how it was put together. If natural philosophers were serious in their quest to become lord and master of nature, they had to tackle head-on the mechanical arts. The novel experimental practice, in other words, went hand-in-hand with the traditional artisanal practices.

Twenty-seven-key organ clavier invented by Mersenne, depicted in the Harmonie universelle.

Twenty-seven-key organ clavier invented by Mersenne, depicted in the Harmonie universelle.

As convinced as Mersenne was of the utility of artisanal knowledge and experimental practices, he likewise believed the mathematical foundation of music could greatly improve the practice of organ playing. This he showed by studying the “science of organ claviers.” In fact, Mersenne explained that “[Gioseffo] Zarlino would not have taken so much pains in explaining the syntone of Ptolemy, which misses many degrees, if he had had an understanding of the keyboards that I propose in the treatise on the spinet and the organ.” Mersenne, in brief, tried to relocate the complete knowledge of musical genres into a mechanical device-the organ clavier. Since experiments and mechanical knowledge showed how best to build organ pipes, a keyboard based on the theory of music now had to match their perfect diapason, so that theory and practice could ultimately work in unison.

Proceeding methodically, Mersenne started with two thirteen-key claviers differently tempered, neither of which displaying perfect major and minor thirds and sixths. In order to produce all the just intoned consonances, these two claviers had to be combined into a seventeen-key clavier. Yet even this keyboard was insufficient to exhibit the just intonation of the complete diatonic genre, which needs at least eighteen tones (hence nineteen keys). The latter, although exhibiting the three musical genres, did not do so perfectly for the chromatic and enharmonic ones, yet would be the best-tempered nineteen-key organ keyboard one could imagine, matching the third column of the organ-pipe table presented previously. To fully render the perfect harmonic diapason, a clavier would need twenty-seven keys, the first row of keys for the diatonic genre, the second row for the chromatic and the last row for the enharmonic. The table that accompanies the clavier’s drawing was the real thing though, displaying at a glance (says Mersenne) the perfection of the harmonic diapason, such that one could straightforwardly extract from it this twenty-seven-key clavier.

Drawn from the most exact theory of music, Mersenne’s twenty-seven-key clavier had great advantages over the conventional ones, and because these claviers were so perfect, nothing should stop organists using them, even if it meant learning anew how to play the organ:

For it is of no importance that the difficulty of playing them is greater, inasmuch as it is not necessary to feel pity for the pains nor to avoid the work which leads to perfection. To this I add that they will be played as easily as the others when the hands become accustomed to them, because they follow the infallible rule of reason.

In this case, musicians and the mechanical arts had to meet the terms of the music theorist, for only through the latter’s science would a better musical instrument be designed and built-and consequently would music approach the long lost perfection of Antiquity.

Conclusion

Mersenne’s twenty-seven-key organ clavier became a true mechanical representation — an embodiment — of the most perfect musical harmony attainable by any of God’s creation. Yet without the precise craftsmanship of organ pipes, which was brought to light by experiments on the width and height of pipes, organ claviers were simply useless. Theory was thus no longer enough. Boethius’s rational musicus was replaced in the seventeenth-century by a perfect musician whose knowledge encompassed, besides the theory of numbers, physiology, philology, poetry, anatomy, metallurgy, the mechanical arts and even magic.

The organ epitomized better than any other musical instrument the strong relationship between religion and secular knowledge. In fact, the same way Lutherans and Catholics claimed organ music assisted the population in praising the Lord Almighty, Mersenne used the detailed description of the mechanical organ to help artisans and savants understand the production of natural philosophical knowledge. The ecumenical virtues of the church organ were transformed, in the secular and material world of natural philosophy, into epistemological virtues. By keeping the organ as mechanical as possible, without imposing on it any allegorical or religious connotation, Mersenne was able to use the organ as the most worthy secular object of knowledge, which could be studied by Christians of all faiths. The same piece of machinery, I would claim, symbolized both the best religious and secular practices. Organs were the reification of Mersenne’s universal harmony, an harmony juxtaposing the spiritual and the worldly, the music of pure consonances with the levers, gears and bellows of a mechanical device. To worship God while listening to the music of an organ or to discover God’s natural creations by means of the latter’s mechanical parts was not that incongruous to someone like Mersenne.

March 15, 2009 Posted by | Epistemology, Instrument | , , , , | 2 Comments

Le cabinet de physique du château de Cirey (conclusion)

(Tiré de mon article publié en 2006 dans SVEC 2006:01, pp. 198-202)
Conclusion: faits experimentaux, anecdotes historiques et philosophie naturelle

‘Voltaire m’a envoyé de Berlin son histoire du Siècle de Louis XIV‘ écrit Lord Chesterfield à son fils le 13 avril 1752:

“C’est l’histoire de l’esprit humain, écrite par un homme de génie pour l’usage des gens d’esprit […] Il me dit tout ce que je souhaite de savoir, et rien de plus; ses réflexions sont courtes, justes, et en produisent d’autres dans ses lecteurs. Exempt de préjugés religieux, philosophiques, politiques et nationaux, plus qu’aucun historien que j’aie jamais lu, il rapporte tous les faits avec autant de vérité et d’impartialité que les bienséances, qu’on doit toujours observer, le lui permettent.”[i]

Les faits, voilà ce que Voltaire propulse à l’avant-scène de toute connaissance. C’est essentiellement à l’aide de ceux-ci qu’il compose écrits historiques et philosophiques.

Dès 1735, en pleine rédaction du Siècle de Louis XIV, Voltaire explicite les liens étroits existant entre les sciences historique et physique:

“Croyez monseigneur le duc que mon respect pour la phisique et pour l’astronomie, ne m’ôte rien de mon goust pour l’histoire. Je trouve que vous faites à merveille de l’aimer. Il me semble que c’est une science nécessaire pour les seigneurs de votre sorte, et qu’elle est bien plus de ressource dans la société, plus amusante et bien moins fatigante que toutes les sciences abstractes [sic]. Il y a dans l’histoire comme dans la phisique certains faits généraux très certains, et pour les petits détails, les motifs secrets, etc., ils sont aussi difficiles à deviner que les ressorts cachez de la nature. Ainsi il y a partout également d’incertitude et de clarté. D’ailleurs ceux qui comme vous aiment les anecdotes en histoire, sont assez comme ceux qui aiment les expériences particulières en phisique.”[ii]

Pour Voltaire, les anecdotes historiques ‘sont un champ resserré où l’on glane après la vaste moisson de l’histoire; ce sont de petits détails longtemps cachés, et de là vient le nom d’anecdotes; ils intéressent le public quand ils concernent des personnages illustres’. [iii] Le parallèle avec la physique expérimentale est on ne peut plus direct: les faits d’expérience doivent pareillement être glanés à partir de la vaste moisson des phénomènes naturels, cependant que ces mêmes faits d’expérience intéresseront davantage le public s’ils touchent des phénomènes connus et divertissants — à l’instar de ceux présentés par l’abbé Nollet et autres lecturer demonstrators de son époque.[iv]

Pas étonnant alors que Voltaire échappe quelques remarques mordantes à l’endroit de sa divine Emilie, comme celle communiquée par exemple au duc de Richelieu, qui vient clore la citation précédente: ‘Voylà tout ce que j’ay de mieux à vous dire en faveur de l’histoire que vous aimez, et que made du Chatelet, méprise un peu trop. Elle traitte Tacite comme une bégueule qui dit des nouvelles de son quartier. Ne viendrez vous pas un peu disputer contre elle quelques jours à Cirey ?’ Ces ‘nouvelles de quartier’, que semble honnir Mme Du Châtelet, composées de petites anecdotes historiques éparses, rappellent que Mme Du Châtelet tient un discours distinct de celui de Voltaire quant à la signification des hypothèses en philosophie naturelle. Dans une lettre à Algarotti, elle sent même le besoin de souligner et de clarifier ce différend épistémologique: ‘J’ai une assez jolie bibliothèque. Voltaire en a une toute d’anecdotes; la mienne est toute philosophie’.[v]

Mme Du Châtelet n’apprécie guère la méthode historique de Voltaire, pour la même raison qu’elle dispute sa méthode scientifique: la prédominance des faits sur les généralisations et les connaissances rationnelles.[vi] Elle ne dénigre pas les expériences — elle les embrasse à vrai dire –, mais rejette en revanche le fait que celles-ci, conformément à la philosophie de Wolff et Leibniz, suffisent à générer une compréhension des causes premières des phénomènes naturels. Il faut à tout prix annexer aux expériences et à leurs machines une technologie immatérielle, les mathématiques et la métaphysique, pour que l’on puisse faire avancer la connaissance humaine. Voltaire, au contraire, ne jure que par les faits produits à l’aide d’outils issus de la culture matérielle historique et philosophique. Autant les monuments, les archives et les médailles incarnent — s’ils sont correctement utilisés — ‘l’instrumentation’ de la méthode empirique de l’histoire, autant les appareils du cabinet de physique du château de Cirey fondent la philosophie naturelle.

Achetés en majorité de l’abbé Nollet, ces instruments entrent toutefois dans la catégorie des instruments de démonstration, lesquels, s’il faut en croire le philosophe naturel anglais Joseph Priestley, auraient une toute autre fonction que celle attribuée de facto par Voltaire. C’est une métaphore — des plus opportunes à notre propos — qui permet à Priestley de comparer les instruments de démonstration à ceux dits de philosophie:

“All true history has a capital advantage over every work of fiction. Works of fiction resemble those machines which we contrive to illustrate the principles of philosophy, such as globes and orreries, the use of which extend no further than the views of human ingenuity; whereas real history resembles the experiments by the air pump, condensing engine and electrical machine, which exhibit the operations of nature, and the God of nature himself.”[vii]

Les instruments qui ornent le cabinet de Cirey ne produiraient-ils, contre toute attente, qu’une ‘fiction’ de la philosophie naturelle ? Où se trouve cette histoire factuelle de la physique que Voltaire défend inlassablement ? A quoi sert, en définitive, le cabinet de physique de Cirey ?

Mme Du Châtelet n’est pas dupe: les instruments de démonstration fournis par l’abbé Nollet n’ouvriront pas de perspectives nouvelles en philosophie naturelle. Ils ne présentent aux amateurs de tous acabits que des faits déjà bien étayés par d’autres savants européens; d’où la nécessité d’abandonner cette contrainte purement expérimentale (et mondaine) afin d’explorer, suivant des règles rigoureusement établies, la voie féconde de la raison. Pour Voltaire, par contre, et contrairement à Priestley, les instruments de démonstration ne créent point de fiction mais une histoire fidèle puisqu’ils nous mettent en face de faits incontournables, des faits répétés ad nauseam qui ne demandent qu’à être classés et expliqués. Il ne suffit donc pas de produire des faits nouveaux, rares et inexpliqués. Tout le contraire. Voltaire participe dans la première moitié du XVIIIe siècle à l’élaboration d’une ‘métaphysique de l’uniformité’, une métaphysique à la recherche de lois fondamentales plutôt que l’agglomération bête d’objets rares et merveilleux; une métaphysique qui favorise la réplication des expériences et le renforcement des faits existants plutôt que les effets inhabituels et curieux.[viii]

Les appareils de l’abbé Nollet, comme nous l’avons mentionné plus tôt, sont tout désignés pour cette tâche. Car en plus d’assouvir le luxe ostentatoire des aristocrates, tel que Voltaire en fait l’apologie dans Le Mondain, la décoration épurée des instruments encourage leur utilisation, et donc la mise en place d’une communauté savante et mondaine prête à souscrire à la régularité des faits d’expérience. Selon Simon Schaffer, ‘[d]emonstration devices were used as part of the process of fixing and regulating the meanings natural philosophers gave to the doctrines which they taught’. [ix] La signification ultime du cabinet de physique, en définitive, n’est pas que matérielle, c’est-à-dire utile à la création de faits. Le cabinet de physique a aussi une signification symbolique, qui procure à son possesseur un pouvoir de persuasion efficace. Toujours selon Schaffer, ‘[i]n disciplining their audiences, [the instruments’ users] also disciplined both the machine and themselves. The material culture of natural philosophy, its instruments and models, was a vital part of its doctrinal authority’.[x] Cette autorité dogmatique, que semblent garantir les instruments scientifiques, pourrait expliquer l’achat par Voltaire de nombreux autres instruments scientifiques plusieurs années après avoir reconnu abandonner l’étude de la physique. Qui plus est, cela justifierait — au moment où il est banni de France et brouillé avec le roi de Prusse — pourquoi Voltaire cherche à tout prix à récupérer en 1754 le cabinet de physique qui se trouve désormais à Paris: sans ce dernier, le prosélyte newtonien perd le symbole matériel de son autorité philosophique.[xi] Les instruments du cabinet de physique, en somme, expriment le caractère empirique de la philosophie naturelle newtonienne, une philosophie fondée uniquement sur les faits d’expérience; les instruments deviennent, pour Voltaire, les outils de son ‘histoire’ de la physique.

Pour Mme Du Châtelet, ce sont davantage les mathématiques que les machines du cabinet qui dotent sa métaphysique, celle de Leibniz et de Wolff, d’une emprise doctrinale sur l’ensemble des connaissances humaines.[xii] Et pourtant, même dans les portraits, les gravures et les descriptions écrites et verbales, on la dépeint couramment avec des instruments en plus des livres de mathématiques, qui pourtant paraissent gâcher une effigie idyllique de la célèbre hôte de Cirey: ‘La divinité de ce lieu étoit tellement ornée & si chargée de Diamants qu’elle eut ressemblé aux Vénus de l’Opera si malgré la mollesse de son attitude & la riche parure de ses habits, elle n’eut pas eû le coude apuïé sur des papiers barbouïllés d’xx & sa Table couverte d’instruments & de Livres de Mathématiques’. [xiii] Il n’est pas impossible non plus que Mme Du Châtelet, lors de la rédaction des Institutions de physique et de la traduction des Principia, se soit tournée plus fréquemment que Voltaire lui-même vers le cabinet de physique, attendu que ce dernier ne fut véritablement complété qu’après la parution des Eléments de philosophie de Newton. C’est, ironiquement, Mme Du Châtelet et non Voltaire, qui eût bénéficié des avantages d’un cabinet de physique complet, destiné à la reproduction des expériences newtoniennes.

Les mathématiques abstraites, si l’on s’en tient à la citation précédente, ne conviennent pas parfaitement au lustre baroque que les machines décorées ornant les cabinets de physique des aristocrates. Et pourtant, réunies comme elles le furent à Cirey, ces deux entités à première vue dichotomique matérialisent une facette intellectuelle propre au siècle des Lumières: celle de la complémentarité entre le catalogue général des réalisations humaines et des machines de l’Encyclopédie et les principes abstraits de la logique, de la liberté et de la justice. S’il est vrai que Mme Du Châtelet et Voltaire soutiennent séparément une épistémologie de la connaissance à bien des égards distincte, conjointement, par leurs actions et leurs écrits, les hôtes de Cirey incarneraient cette complémentarité entre esprit géométrique et utilitaire, quintessence des Lumières. Au sein de cette ‘Académie universelle de sciences et de bel esprit’, cabinet de physique, faits d’expérience, mathématiques et métaphysique édifient un tout indissociable, une complémentarité désormais représentative de la méthode scientifique moderne.

_________________________________

[i] Voltaire, Siècle de Louis XIV, dans Œuvre complètes de Voltaire, sous la direction de Louis Moland, 52 vols (Paris 1877-1885), xiv.iii-iv (c’est moi qui souligne).

[ii] Voltaire à Louis François Armand Du Plessis, duc de Richelieu, 30 [juin 1735] (D886).

[iii] Voltaire, Siècle de Louis XIV, p.421.

[iv] Condorcet établit même un rapport entre la physique et les œuvres poétiques de Voltaire: ‘Il est utile de répandre dans les esprits des idées justes sur des objets qui semblent n’appartenir qu’aux sciences, lorsqu’il s’agit ou de faits généraux importants dans l’ordre du monde, ou de faits communs qui se présentent à tous les yeux. L’ignorance absolue est toujours accompagnée d’erreurs, et les erreurs en physique servent souvent d’appui à des préjugés d’une espèce plus dangereuse. D’ailleurs les connaissances physiques de Voltaire ont servi son talent pour la poésie. Nous ne parlons pas seulement ici des pièces où il a eu le mérite rare d’exprimer en vers des vérités précises sans les défigurer, sans cesser d’être poëte, de s’adresser à l’imagination et de flatter l’oreille; l’étude des sciences agrandit la sphère des idées poétiques, enrichit les vers de nouvelles images; sans cette ressource, la poésie, nécessairement resserée dans un cercle étroit, ne serait plus que l’art de rajeunir avec adresse, et en vers harmonieux, des idées communes et des peintures épuisées’. Condorcet, Vie de Voltaire, dans Œuvre complètes de Voltaire, i.214.

[v] Mme Du Châtelet à Algarotti, [c.1er octrobre 1735] (D920).

[vi] Selon John Leigh, ‘Voltaire seems drawn to the study of history precisely because it does, in his eyes, resist generalising and systematising responses, conclusions stamped absolutely and axiomatically’. Leigh, Voltaire: a sense of history (Oxford 2004; SVEC 2004:05), p.91.

[vii] Joseph Priestley, ‘Lectures on history and general policy’, dans The theological and miscellaneous works of Joseph Priestley, sous la direction de J. T. Rutt, 25 vols (Londres 1817-1831), xxiv.27-28; cité par Schaffer, ‘Natural history and public spectacle’, p.1.

[viii] Lorraine Daston et Katharine Park, Wonders and the order of nature, 1150-1750 (New York 2001), p.354-355.

[ix] Simon Schaffer, ‘Machine philosophy: demonstration devices in Georgian mechanics’, dans Instruments, sous la direction de Albert van Helden et Thomas L. Hankins, Osiris 9 (1994), p.157-182 (p.160).

[x] Schaffer, ‘Machine philosophy’, p.181.

[xi] Au sujet de l’abandon de la physique, voir Voltaire au comte d’Argental, 22 août 1741 (D2533). Voir aussi Voltaire à Pitot, 19 juin [1741] (D2500); Voltaire à Cideville, 25 avril 1740 (D2201). Quant au cabinet qui se trouve à Paris, Voltaire écrit de Colmar à sa nièce et amante, Mme Denis: ‘Du Bordier est il encor dans notre maison ? S’il y est il pourra servir à emballer le cabinet de phisique. Sinon l’abbé Nolet pourra fournir un homme. Voylà de tristes arrangements’. Voltaire à Mme Denis, 27 janvier [1754] (D5638). Une semaine plus tard, il réécrit: ‘Il y a un nommé Pagni qui fait des expériences comme Nolet, et qui m’a fourni beaucoup de machines. Il demeure sur le quai des quatre nations, il est adroit, il emballera tous mes instruments de phisique si Bordier n’est plus au logis’. Voltaire à Mme Denis, 5 février [1754] (D5652).

[xii] Voltaire, en contrepartie, s’oppose à la métaphysique, qu’il compare à un jeu d’esprit, ‘au pays des romans’: ‘toute la théodicée de Leibnitz ne vaut pas une expérience de l’abbé Nolet’. Pour contrer cette inclination, il propose d’acquérir ‘un cabinet de physique, & le faire diriger par un artiste; c’est un des grands amusements de la vie’. Voltaire à Rolland Puchot Des Alleurs, 13 mars 1739 (D1936).

[xiii] Le Blanc à Bouhier, [19 novembre 1736] (D1205).

March 10, 2009 Posted by | Epistemology, Instrument | , , , , | Leave a comment

Follow

Get every new post delivered to your Inbox.